排序算法 - 3.归并排序(Merge Sort)

霄
2024-05-17 / 0 评论 / 33 阅读 / 正在检测是否收录...

归并排序(Merge Sort)

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。


public class Merge {
    public static void main(String[] args) throws Exception {
        Integer[] arr = {8, 4, 5, 7, 1, 3, 6, 2};
        Merge.sort(arr);
        System.out.println(Arrays.toString(arr));
    }
    private static Comparable[] assist;//归并所需要的辅助数组

    /*
    对数组a中的元素进行排序
    */
    public static void sort(Comparable[] a) {
        assist = new Comparable[a.length];
        int lo = 0;
        int hi = a.length - 1;
        sort(a, lo, hi);
    }

    /*
    对数组a中从lo到hi的元素进行排序
    */
    private static void sort(Comparable[] a, int lo, int hi) {
        if (hi <= lo) {
            return;
        }
        int mid = lo + (hi - lo) / 2;
        //对lo到mid之间的元素进行排序;
        sort(a, lo, mid);
        //对mid+1到hi之间的元素进行排序;
        sort(a, mid + 1, hi);
        //对lo到mid这组数据和mid到hi这组数据进行归并
        merge(a, lo, mid, hi);
    }

    /*
    对数组中,从lo到mid为一组,从mid+1到hi为一组,对这两组数据进行归并
    */
    private static void merge(Comparable[] a, int lo, int mid, int hi) {
        //lo到mid这组数据和mid+1到hi这组数据归并到辅助数组assist对应的索引处
        int i = lo;//定义一个指针,指向assist数组中开始填充数据的索引
        int p1 = lo;//定义一个指针,指向第一组数据的第一个元素
        int p2 = mid + 1;//定义一个指针,指向第二组数据的第一个元素
        //比较左边小组和右边小组中的元素大小,哪个小,就把哪个数据填充到assist数组中
        while (p1 <= mid && p2 <= hi) {
            if (less(a[p1], a[p2])) {
                assist[i++] = a[p1++];
            } else {
                assist[i++] = a[p2++];
            }
        }
        //上面的循环结束后,如果退出循环的条件是p1<=mid,则证明左边小组中的数据已经归并完毕,如果退出循环的条件是p2<=hi,则证明右边小组的数据已经填充完毕;
        //所以需要把未填充完毕的数据继续填充到assist中,//下面两个循环,只会执行其中的一个
        while (p1 <= mid) {
            assist[i++] = a[p1++];
        }
        while (p2 <= hi) {
            assist[i++] = a[p2++];
        }
        //到现在为止,assist数组中,从lo到hi的元素是有序的,再把数据拷贝到a数组中对应的索引处
        for (int index = lo; index <= hi; index++) {
            a[index] = assist[index];
        }
    }

    /*
    比较v元素是否小于w元素
    */
    private static boolean less(Comparable v, Comparable w) {
        return v.compareTo(w) < 0;
    }

    /*
    数组元素i和j交换位置
    */
    private static void exch(Comparable[] a, int i, int j) {
        Comparable t = a[i];
        a[i] = a[j];
        a[j] = t;
    }
}

时间复杂度为O(nlogn);
归并排序的缺点:
需要申请额外的数组空间,导致空间复杂度提升,是典型的以空间换时间的操作。

扫描二维码,在手机上阅读!
68

评论 (0)

取消